Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Crowdyet al.(2023Phys. Rev. Fluids, vol. 8, 094201), recently showed that liquid suspended in the Cassie state over an asymmetrically spaced periodic array of alternating cold and hot ridges such that the menisci spanning the ridges are of unequal length will be pumped in the direction of the thermocapillary stress along the longer menisci. Their solution, applicable in the Stokes flow limit for a vanishingly small thermal Péclet number, provides the steady-state temperature and velocity fields in a semi-infinite domain above the superhydrophobic surface, including the uniform far-field velocity, i.e. pumping speed, the key engineering parameter. Here, a related problem in a finite domain is considered where, opposing the superhydrophobic surface, a flow of liquid through a microchannel is bounded by a horizontally mobile smooth wall of finite mass subjected to an external load. A key assumption underlying the analysis is that, on a unit area basis, the mass of the liquid is small compared with that of the wall. Thus, as shown, rather than the heat equation and the transient Stokes equations governing the temperature and flow fields, respectively, they are quasi-steady and, as a result, governed by the Laplace and Stokes equations, respectively. Under the further assumption that the ridge period is small compared with the height of the microchannel, these equations are resolved using matched asymptotic expansions which yield solutions with exponentially small asymptotic errors. Consequently, the transient problem of determining the velocity of the smooth wall is reduced to an ordinary differential equation. This approach is used to provide a theoretical demonstration of the conversion of thermal energy to mechanical work via the thermocapillary stresses along the menisci.more » « lessFree, publicly-accessible full text available April 25, 2026
-
Lauga, Eric; McKeon, Beverly (Ed.)A mechanism for a microfluidic pump that leverages alternating adverse and favorable thermocapillary stresses along menisci in a (periodically) fully developed transverse flow in a microchannel is exemplified. The transverse ridges are the interdigitated teeth of cold and hot (isothermal) “combs” and free surface menisci span the interstitial regions between them. The teeth are asymmetrically positioned so that the widths of adjacent menisci differ. This architecture is essentially that of the theoretical pump proposed by Adjari [Phys. Rev. E 61, R45(R) (2000)] but exploits thermocapillarity rather than electro-osmotic slip to drive unidirectional pumping. A theoretical model of the multiphysics pumping mechanism is given that is solved in closed form. Two explicit formulas for the pumping speed are provided. One is derived from the exact solution to the full problem; the other follows from the reciprocal theorem for Stokes flow combined with an exact solution to a distinct problem resolving apparent slip over superhydrophobic surfaces [D. G. Crowdy, Phys. Fluids 23, 072001 (2011)]. A conceptual design of the pump is also outlined; this involves no moving parts, requires no external driving pressure, and pumps a continuous stream of liquid through a microchannel, as opposed to a series of discrete droplets. Since there is only a periodic component of the pressure field the microchannel could be made arbitrarily long and the menisci, which would be essentially flat, are more robust than for conventional pressure-driven flow.more » « less
-
Abstract The global seasonal cycle of energy in Earth’s climate system is quantified using observations and reanalyses. After removing long-term trends, net energy entering and exiting the climate system at the top of the atmosphere (TOA) should agree with the sum of energy entering and exiting the ocean, atmosphere, land, and ice over the course of an average year. Achieving such a balanced budget with observations has been challenging. Disagreements have been attributed previously to sparse observations in the high-latitude oceans. However, limiting the local vertical integration of new global ocean heat content estimates to the depth to which seasonal heat energy is stored, rather than integrating to 2000 m everywhere as done previously, allows closure of the global seasonal energy budget within statistical uncertainties. The seasonal cycle of energy storage is largest in the ocean, peaking in April because ocean area is largest in the Southern Hemisphere and the ocean’s thermal inertia causes a lag with respect to the austral summer solstice. Seasonal cycles in energy storage in the atmosphere and land are smaller, but peak in July and September, respectively, because there is more land in the Northern Hemisphere, and the land has more thermal inertia than the atmosphere. Global seasonal energy storage by ice is small, so the atmosphere and land partially offset ocean energy storage in the global integral, with their sum matching time-integrated net global TOA energy fluxes over the seasonal cycle within uncertainties, and both peaking in April.more » « less
-
null (Ed.)Abstract We develop a two-dimensional model for the transient diffusion of gas from the cavities in ridge-type structured surfaces to a quiescent liquid suspended above them in the Cassie state to predict the location of the liquid vapor-interface (meniscus) as a function of time. The transient diffusion equation is numerically solved by a Chebyshev collocation (spectral) method coupled to the Young-Laplace equation and the ideal gas law. We capture the effects of variable meniscus curvature and, subsequently, when applicable, movement of triple contact lines. Results are presented for the evolution of the dissolved gas concentration field in the liquid and, when applicable, the time it takes for a meniscus to depin and that for longevity, i.e., the onset of the Cassie to Wenzel state transition. Two configurations are examined; viz., one where an impermeable membrane pressurizes the liquid above the ridges and one where hydrostatic pressure is considered and the top of the liquid is exposed to non-condensable gas.more » « less
-
Abstract. The Earth climate system is out of energy balance, and heat hasaccumulated continuously over the past decades, warming the ocean, the land,the cryosphere, and the atmosphere. According to the Sixth Assessment Reportby Working Group I of the Intergovernmental Panel on Climate Change,this planetary warming over multiple decades is human-driven and results inunprecedented and committed changes to the Earth system, with adverseimpacts for ecosystems and human systems. The Earth heat inventory providesa measure of the Earth energy imbalance (EEI) and allows for quantifyinghow much heat has accumulated in the Earth system, as well as where the heat isstored. Here we show that the Earth system has continued to accumulateheat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to aheating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority,about 89 %, of this heat is stored in the ocean, followed by about 6 %on land, 1 % in the atmosphere, and about 4 % available for meltingthe cryosphere. Over the most recent period (2006–2020), the EEI amounts to0.76±0.2 W m−2. The Earth energy imbalance is the mostfundamental global climate indicator that the scientific community and thepublic can use as the measure of how well the world is doing in the task ofbringing anthropogenic climate change under control. Moreover, thisindicator is highly complementary to other established ones like global meansurface temperature as it represents a robust measure of the rate of climatechange and its future commitment. We call for an implementation of theEarth energy imbalance into the Paris Agreement's Global Stocktake based onbest available science. The Earth heat inventory in this study, updated fromvon Schuckmann et al. (2020), is underpinned by worldwide multidisciplinarycollaboration and demonstrates the critical importance of concertedinternational efforts for climate change monitoring and community-basedrecommendations and we also call for urgently needed actions for enablingcontinuity, archiving, rescuing, and calibrating efforts to assure improvedand long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4.more » « less
-
Noetzli, J., Christiansen, H.H, Guglielmin, M., Hrbáček, F., Hu, G., Isaksen, K., Magnin, F., Pogliotti, P., Smith, S. L., Zhao, L. and Streletskiy, D. A. 2024. Permafrost temperature and active layer thickness. In: State of the Climate in 2023. Bulletin of the American Meteorological Society, 105 (8), S43–S44, https://doi.org/10.1175/BAMS-D-24-0116.1more » « less
-
Abstract As wearable technologies redefine the way people exchange information, receive entertainment, and monitor health, the development of sustainable power sources that capture energy from the user's everyday activities garners increasing interest. Electric fishes, such as the electric eel and the torpedo ray, provide inspiration for such a power source with their ability to generate massive discharges of electricity solely from the metabolic processes within their bodies. Inspired by their example, the device presented in this work harnesses electric power from ion gradients established by capturing the carbon dioxide (CO2) from human breath. Upon localized exposure to CO2, this novel adaptation of reverse electrodialysis chemically generates ion gradients from a single initial solution uniformly distributed throughout the device instead of requiring the active circulation of two different external solutions. A thorough analysis of the relationship between electrical output and the concentration of carbon capture agent (monoethanolamine, MEA), the amount of CO2captured, and the device geometry informs device design. The prototype device presented here harvests enough energy from a breath‐generated ion gradient to power small electronic devices, such as a light‐emitting diode (LED).more » « less
-
null (Ed.)Abstract. Human-induced atmospheric composition changes cause a radiative imbalance atthe top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain ofthe Earth system – and particularly how much and where the heat isdistributed – is fundamental to understanding how this affects warmingocean, atmosphere and land; rising surface temperature; sea level; and lossof grounded and floating ice, which are fundamental concerns for society.This study is a Global Climate Observing System (GCOS) concertedinternational effort to update the Earth heat inventory and presents anupdated assessment of ocean warming estimates as well as new and updated estimatesof heat gain in the atmosphere, cryosphere and land over the period1960–2018. The study obtains a consistent long-term Earth system heat gainover the period 1971–2018, with a total heat gain of 358±37 ZJ,which is equivalent to a global heating rate of 0.47±0.1 W m−2.Over the period 1971–2018 (2010–2018), the majority of heat gain is reportedfor the global ocean with 89 % (90 %), with 52 % for both periods inthe upper 700 m depth, 28 % (30 %) for the 700–2000 m depth layer and 9 % (8 %) below 2000 m depth. Heat gain over land amounts to 6 %(5 %) over these periods, 4 % (3 %) is available for the melting ofgrounded and floating ice, and 1 % (2 %) is available for atmospheric warming. Ourresults also show that EEI is not only continuing, but also increasing: the EEIamounts to 0.87±0.12 W m−2 during 2010–2018. Stabilization ofclimate, the goal of the universally agreed United Nations Framework Convention on ClimateChange (UNFCCC) in 1992 and the ParisAgreement in 2015, requires that EEI be reduced to approximately zero toachieve Earth's system quasi-equilibrium. The amount of CO2 in theatmosphere would need to be reduced from 410 to 353 ppm to increase heatradiation to space by 0.87 W m−2, bringing Earth back towards energybalance. This simple number, EEI, is the most fundamental metric that thescientific community and public must be aware of as the measure of how wellthe world is doing in the task of bringing climate change under control, andwe call for an implementation of the EEI into the global stocktake based onbest available science. Continued quantification and reduced uncertaintiesin the Earth heat inventory can be best achieved through the maintenance ofthe current global climate observing system, its extension into areas ofgaps in the sampling, and the establishment of an international framework forconcerted multidisciplinary research of the Earth heat inventory aspresented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https://www.dkrz.de/, last access: 7 August 2020) under the DOIhttps://doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2(von Schuckmann et al., 2020).more » « less
An official website of the United States government
